
The energy diagram of NiO within an LCAO-LSDA+ U approach

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys.: Condens. Matter 9 647

(http://iopscience.iop.org/0953-8984/9/3/005)

Download details:

IP Address: 171.66.16.151

The article was downloaded on 12/05/2010 at 23:04

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/9/3
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter9 (1997) 647–661. Printed in the UK PII: S0953-8984(97)76622-0

The energy diagram of NiO within an LCAO-LSDA + U

approach

J Hugel and M Kamal
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Received 25 July 1996

Abstract. The itinerant LCAO picture based on localized atomic-like orbitals has been used
to study the electronic ground state of NiO. TheU -corrected local spin-density approximation
(LSDA+U) yields energy-dispersion curves which show satisfactory agreement with the angular
photoemission measurements. As a result the d states appear as narrow and well identified bands
located above the 2p oxygen bands. The on-site Coulomb energyU increases the 2p character
within the upper d valence band but not to the extent that NiO can be considered as a charge-
transfer insulator.

1. Introduction

It is well known that the classical band theory failed to describe the electronic properties of
NiO. The failure has been straightforwardly ascribed to the d electrons. Their small spread
in space and their atomic representation in terms of unclosed shells lie at the origin of the
problem. The difficulty has given rise to many theoretical and experimental studies but none
of the efforts were able to provide a definite answer at the time. NiO is the prototype of the
Mott–Hubbard insulators in which the forbidden gap separates the occupied from the empty
d bands. The early classification proposed by Mott [1] has evolved towards the concept of
a charge-transfer insulator characterized by an upper p-predominant valence band after the
spectroscopic data were successfully interpreted within the model of Fujimori and Minami
[2]. The wide acceptance of the inverted classical Mott–Hubbard scheme stems from the
assignment of the resonant satellite peak in term of pure d7 states.

Two points of view compete amidst all the theoretical approaches. One concept is that
the one-electron scheme is not suitable for describing strongly correlated electronic systems.
Mott was the first to notice that the electronic interactions were not properly described in
the classical band Hamiltonian. The deficiency has been reduced by Hubbard in his well
known Hamiltonian with the introduction of the intrasite electrostatic interactions. The
second concept, that of Slater [3], admits the fundamentals of the band theory and imputes
the observed difficulties to the lack of realism in the physical description. The merit of
Slater’s concept lay in his proposal of the spin-polarized approach as a means by which to
treat the antiferromagnetic ordering. The first confirmation has been obtained by Terakura
et al [4]. They explained the appearance of a small forbidden gap in NiO as a crystal-
field effect. This result removed the doubt about the band theory and generated fruitful
developments.

A well recognized method for describing the ground state in chemistry and in solid-state
physics is that of the density functional theory (DFT) of Kohn and Sham [5]. For practical

0953-8984/97/030647+15$19.50c© 1997 IOP Publishing Ltd 647



648 J Hugel and M Kamal

purposes the theory is used within its local density approximation (LDA). In principle the
theory treats the exchange energy and the correlation energy on the same level and has
furnished satisfactory results for slowly varying densities. Its limitation appeared when the
local spin-density approximation (LSDA) was unable to reproduce the electrical behaviour
of the transition monoxide series. Since the LSDA was founded on a homogeneous electron
density it became obvious that one could ascribe the disagreement to the localized character
of the d or f electrons. In order to reduce the discrepancy appearing in the practical
application of the Kohn–Sham theory, various corrections have been proposed.

A general correction consists in employing a non-uniform density in order to better
account for the exchange–correlation potential. The attempt is based on the gradient
expansion with the aim of improving the homogeneous gas results. Various expressions
for the exchange–correlation potential have been proposed and have generally been termed
the general gradient approximation (GGA).

Recently Dufeket al [6] established as a general rule that the GGA [7] reduces the
occupied bandwidths and that it emphasizes the band separation. Thus for NiO the band
gap increases from 0.4 eV in the absence of correction to 1.2 eV when it is applied.
Further Dufeket al [8] showed that when another version of the GGA [9] is used, FeO and
CoO become insulating. They also indicate in their former work that the angular gradient
enhances the asphericity of the exchange–correlation potential and in the case of CoO plays
a part in stabilizing the magnetic state. The asphericity acts on the electronic density by
destroying the fourfold symmetry. The last theoretical prediction is not actually confirmed
by the experiment [10].

A less general way of taking correlation effects into account is given by the self-
interaction correction (SIC). Its purpose is to cure the lack of compensation between the self-
exchange correlation energy and the self-Coulomb energy. The correction systematically
lowers the occupied states since it consists in subtracting the potential created by the charge
density on itself. Svane and Gunnarsson [11] on one hand and Szoteket al [12] on the
other observed that the action of the SIC leads to a reversal of the d bands with respect
to the oxygen 2p bands because the most significant correction occurs for the localized d
electrons. The forbidden band of NiO is 2.54 eV wide and shows appreciable progress over
the non-corrected LSDA.

Another way of introducing the correlation effects has been proposed by Anisimovet al
[13]. Their idea is to reduce the drawbacks resulting from the use of a local spherical density
by taking into account the fluctuations of the orbital occupation numbers. The discrepancies
become significant for atoms having a non-filled shell whereas they are practically missing
for a saturated shell. In the LDA, as in the Hartree–Fock approaches, these fluctuations are
generally neglected although they are embedded in these methods as soon as a spherical
density is considered. In order to re-establish the right occupation number Anisimovet al
[13] introduced an orbital-dependent potential into the LDA scheme. This potential depends
upon two parameters, the Coulomb interactionU and the exchange integralJ . Their
correction is known as the LDA+ U approximation and has been used to self-consistently
calculate the NiO density of states by means of the LMTO-ASA method. These authors
found a forbidden bandwidth equal in magnitude to the experimental value for converged
U - and J -values equal to 8 eV and 0.95 eV respectively. The electronic states sequence
corresponds to that of a wide-gap magnetic insulator of the charge-transfer type with the
occupied 3d bands below the oxygen 2p bands. Another calculation has been undertaken
by Wei and Qi [14]. Their study is distinguished from the former by the spin-polarized
approach followed within a discrete variational method applied to a cluster. The latter
authors find a gap of 3.7 eV for NiO withU being 6.1 eV, taken from Zaanen and Sawatzky
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[15]. The relative positions of the p and d bands are similar to the results of Anisimov
et al [13] and confer a charge-transfer character to NiO. The LSDA+ U method with its
additional orbital potential is close in nature to the orbital polarization correction presented
by Norman [16]. Both corrections try to reduce the drawbacks resulting from the use of
spherical densities which equally populate each d level. Whereas Norman [16] assumes
an open-shell correction based on a crystal-field basis, Anisimovet al [13] introduce the
Coulomb interactionU arising from the fluctuation contributions generally neglected in the
mean-field approximation.

The various approximations developed to take into account the correlations yield fairly
similar results in the sense that the occupied d bands are contracted and lowered in energy.
Most of the recently obtained ground-state densities display an upper p valence band and
a d band in the region of the resonant photoemission peak. They support the band picture
provided by Fujimori and Minami [2] and consequently the charge-transfer nature of NiO.
Nevertheless a different point of view can be maintained when the angular photoemission
measurements are considered. Indeed, the recent measurements of Shenet al [17] and
those of Kuhlenbecket al [18] show a dual band structure. Very dispersive bands appear
below flat bands in the0–X direction. The broad bands have been assigned to the oxygen
functions and the narrow bands to the metal ones. The experimental band organization is in
opposition to the current theoretical scheme. This alternative picture can also be supported
by reference to the detailed and argued analysis presented by Hüfner et al [19].

In contrast to other work dealing with the LSDA+U model [2, 14] our goal is to show
that theU -correction is able to derive dispersion curves close to the angular experimental
results. This may possibly be realized with a the local density describing at best the real
crystal density. In our approach the local density can be adjusted to some extent by means of
the procedure described in the next section. A major part is played by the corrective orbital
potential which depends on the occupation numbers. The itinerant states are expanded in
terms of localized atomic-like orbitals via the LCAO method which accounts well for the
localization of the d electrons. The whole derivation is only meaningful if the upper valence
band displays significant 2p admixture.

2. Method

The ground-state density is obtained through the self-consistent solution of the Kohn–Sham
[5] crystal equation. Each iteration of the self-consistent procedure is divided into two
steps. The first step provides a basic set of atomic-like orbitals used to expand the basis
Bloch functions. The second step performs the electronic density together with the orbital
occupation numbers required to carry out the convergence procedure. At every cycle the
crystal wave-function expansion coefficients are calculated for a modified basis set. The
degree of convergence is estimated by the deviation between the band charge and the local
charge densities.

The localized orbitals proceed from the solution of a one-particle Kohn–Sham equation
within the local density approximation (LDA) for each atom of the unit cell. The local
one-particle equation reads[

−1

2
∇2 + V α(r)

]
ϕα

nl(r) = εα
nl ϕα

nl(r) (1)

where theεα
nl are the atomic-like eigenvalues for the isolated atomα, and theϕα

nl(r) represent
the corresponding atomic-like radial parts for leveln, l.
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The space is divided into two regions. Inside a muffin-tin region the potential is the sum
of the electron–nucleus, the Coulomb, the exchange–correlation and the intercell potentials:

V α(r) = −Zα

r
+ V α

Coul(r) + V α
exch−cor(r) + V α

intercell(r). (2)

The Coulomb and exchange–correlation potentials are expressed through a so-called one-
centre crystal densityρα

crys(r) attached to each site and defined later in (3). The Coulomb
potential is written as

V α
Coul(r) =

∫
ρα

crys(r)

|r − r′| dr ′

and is calculated from the spherically averaged electron density in the usual way.
For the exchange–correlation potential we retain only the non-gradient term. Since the

study deals with a spin-polarized calculation the parametrized expression given by von Barth
and Hedin [20] has been used. The values of the parameters have been taken from Moruzzi
et al [21].

The potential created by the other cells is the long-range contribution exerted by the
ionic charges located on the crystal sites:

V α
intercell(r) =

∑
β 6=α

q
β
e

r − rβ

whereqβ gives the value and the sign of the ionic charge in electron units.
Outside the muffin-tin sphere a constant potentialV 0 is assumed. Its role is to compact

the tail of the orbitals while keeping the nodes practically in their free-atomic positions.
The atomic-like orbitals for the crystal-atom species are calculated self-consistently using a
Herman–Skillman [22] program which gives them in tabular form. The numerical basis set
is composed of orbitals corresponding to the occupied and lowest-lying unoccupied levels.
These localized orbitals serve to form a Bloch basis set for the crystal eigenfunctions and
to construct a one-centre atomic-like local densityρα

a (r) expressed as

ρα
a (r) =

oc∑
n,l

P α
n,l

∣∣ϕα
n,l(r)

∣∣2
. (3)

The summation is over all of the occupied orbitals with occupation numbersP α
n,l . These

are fractionary numbers describing the configuration of an atom in its crystal environment.
The crystal potential is the sum of muffin-tin potentials derived from the local densities

ρα
a (r) ascribed to each site. The constant potentialV 0 introduced in order to obtain a local

basis set does not appear in the crystal potential. It is expressed as

Vcrys(r) =
∑

υ

∑
α

V α(r − Rυ)

whereυ designates the crystal unit cells andα the sites within the unit cell.
V α is the potential defined inside the muffin-tin sphere centred on siteα according to

equation (2) withρα
a (r) as input.

The crystal eigenstates9λ(k, r) are developed in terms of Bloch functions8j(k, r) in
the usual manner:

9λ(k, r) =
∑

j

aλ
j (k)8j (k, r)

wherej stands for the crystal siteα and for both of the atomic quantum numbersn and l,
andλ indicates the band to which the eigenstates are related.
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The ground-state crystal charge densityρcrys(r) is expressed as

ρcrys(r) = e
∑
k∈BZ

oc∑
λ

9+
λ (k, r)9λ(k, r).

The summations extend throughout thek-vectors belonging to the first Brillouin zone
and over the occupied bands.

The crystal charge densityρα
crys(r) attached to a particular siteα is easily extracted out

of ρcrys(r) with the aid of the intermediate quantityρλ,ij (r). The quantity is constructed for
two components of an eigenfunction belonging to theλ-band, and reads

ρλ,ij (r) = e
∑

k

aλ+
i (k)aλ

j (k)φ+
i (k, r)φj (k, r)

with

ρλ,ij (r) = ρ+
λ,ji(r)

whereφi(k, r) and φj (k, r) are basis Bloch functions expanded in terms of the localized
orbitals obtained in the first step.

The aλ
i (k) are the expansion coefficients of the eigenfunction belonging to theλ-band.

The above quantity makes it possible to define the charge densityρi(r) associated with
a Bloch functionφi(k, r) through the relation

ρi(r) = Re

[∑
j

occup∑
λ

ρλ,ij (r)

]
.

The definition ofρi(r) implies that we use a Mulliken [23] population partitioning in
which the cross terms are divided equally between the relevant sites. Obviously many
possibilities of sharing the mixed terms among the sites exist. If another partitioning is
adopted it should be mentioned, since the converged results depend on the new prescription.
In practice we use a radial charge density in order to solve a one-dimensional Poisson
equation for obtaining the muffin-tin potentials entering the crystal potential expression.

The charge density belonging to a crystal siteα is the sum over the contributions of
all of the occupied orbitals centred on the site. After integration over the longitudinal and
azimuthal angles the band charge densityρα

crys(r) is given by the relation

ρα
crys(r) =

∑
i,α fixed

ρi(r). (4)

The crystal charge density is then cast into the crystal band densities belonging to each
site according to the expression

ρcrys(r) =
∑

α

ρα
crys(r).

The populationP α
n,l related to the Bloch functionφi(k, r) is expressed as

P α
n,l = Pi =

∫
ρi(r) dr.

In our procedure the same occupation numbers are assumed for the atomic-like functions
ϕα

n,l(r) to be found in expression (3).
The ionic chargeQα on one siteα is easily defined via the atomic numberZα:

Qα = Zαe −
∑

i∈siteα

Pi.
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The first cycle of the self-consistent procedure is not performed with an initial guess for
theP α

n,l but with a local potential expressed as a superposition of free-atomic potentials. The
single potential for each constituent of the unit cell is derived from an individual potential
corrected by a spherically averaged contribution from the neighbouring atoms as exposed
in reference [24]. The self-consistent criterion adopted at present is the stabilization on the
population numbersP α

n,l . At convergence, the crystal eigenfunctions9λ(k, r) are consistent
with the crystal charge densityρcrys(r) while the atomic-like orbitalsϕα

n,l(r) are consistent
with the local atomic densityρα

a (r). The two densities always show a residual density
1ρα(r), so self-consistency cannot be fully achieved:

1ρα(r) = ρα
crys(r) − ρα

a (r).

Our density definitions lead to
∫

1ρα(r) dr = 0, so the meaningful deviationσα meas-
uring the quality of convergence is defined as

(σ α)2 = 1

�

∫
(1ρα(r))2

4πr2
dr

where� is the unit-cell volume.
Even if a variational procedure is engaged to minimize the difference, the latter can

never vanish sinceρcrys(r) is expressed in terms of delocalized states andρα
a (r) in terms of

localized levels. In fact,σα falls to small values for localized levels like the d orbitals of
nickel and to acceptable values for the oxygen. As a result the simple occupation number
convergence scheme makes the Kohn–Sham equation compatible with the atomic-like basis
set. The optimal local basis retained here is the one which leads to satisfactory agreement
between the calculated and experimental observables.

It is worth mentioning that the constant potential outside the muffin-tin region allows
an additional degree of flexibility since it is possible to more or less compress the atomic-
like orbitals. This freedom can be used to modify the atomic configuration and the related
ionicity of the crystal constituents. Thus the framework of the method is first to choose
an atomic-like numerical set related to the localizing potentialV 0 and second to make the
crystal Kohn–Sham equation consistent with the limited local basis. The degree of self-
consistency is estimated by the values of theσα. The method outlined can be considered as a
simplified variant of the discrete variational method presented by Zunger and Freeman [25].
Two main differences are to be noticed:1ρα(r) is not variationally minimized according to
the occupation numbersP α

n,l and the densities are only expressed in the radial coordinates.
The LCAO formalism based on the local spin-density approximation (LSDA) has been

used to represent the crystal Kohn–Sham equation. The muffin-tin volumes at each atomic
site overlap but are limited by the condition that the sum of the volumes must be equal to the
volume of the unit cell. The potential overlap is only effective between the first neighbours,
in the case of the second neighbours the most stringent condition that we can impose is for
them to touch. The general expressions for the diagonal and off-diagonal matrix elements
have been derived in [24]. These elements have been developed in a classical manner
in terms of overlap, crystal and potential integrals. Only two-centre integrals are taken
into account and are calculated by numerical integration from the tabulated potentials and
atomic-like functions.

The LSDA+ U approximation essentially substitutes for the mean orbital occupation
number with its effective occupation. This improvement is achieved by means of a corrective
potentialVmσ proposed by Anisimovet al [13]. For a spin-polarized density of states the
expression reads

Vmσ = U
∑
m′

(nm′−σ − n0) + U
∑
m′ 6=m

(nm′σ − n0) − I
∑
m′ 6=m

(nm′σ − nσ
0 ).
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The Vmσ -potential is orbital dependent and operates only on partially occupied shells.
It is expressed through the Hubbard interactionU which is at present considered as an
adjustable parameter and through the Stoner parameterI which is calculated in each
iteration. As a result, the additional potential polarizes the orbitals and generates a non-
spherical density for an unfilled d shell. In this sense the correction takes correlation effects
into account since the electron trajectories follow their orbital symmetries and depart from
the spherical symmetry. A polarized orbital lowers the non-corrected LSDA potential and
thus reduces the importance of the electronic Coulomb interaction. TheVmσ -potential is
treated as a first-order perturbation in our scheme and acts in each matrix element build-up
with the metal d functions.

3. Results

Our results are devoted to a spin-polarized calculation applied to antiferromagnetic NiO.
Following the derivation of Slater [3], the majority↑ and the minority↓ spins are set
apart by a specific potential operating on each spin direction. As the exchange correlation
potential is stronger for the majority-spin system this latter will be pulled down below that
of the minority-spin system. Going from a metal↑ to a metal↓ the 3d spin directions have
to be reversed. But the majority-spin system for both the metal↑ and the metal↓ sees the
same potential and so does the minority-spin system. This explains the double degeneracy
of the spin-polarized density of states.

The distinction between the two spin systems has an effect on the space group
identification. The electrons with a given spin direction feel a distinct potential as they
move from one site to another one. From a crystallographic point of view one simulates
this fact by considering two metal species. NiO in its antiferromagnetic phase is to be
considered as an ABO2-type compound which belongs to the rhombohedral D5

3d space
group.

The initial atomic configurations used for the definition of the local basis sets are
1s22s22p63s23p63d84s04p0 for the nickel ion and 1s22s22p6 for the oxygen ion. The secular
matrix is spanned by the 2s and 2p oxygen functions together with the 3d, 4s and 4p metal
functions. They generate a 26-by-26-dimensional matrix since the magnetic unit cell is
twice the paramagnetic unit cell. The chosen radii for the metal and oxygen spheres are
respectively 2.65 au and 2.8 au. The convergence of the occupation numbers is considered
as achieved once the values of theP α

n,l are stable up to five figures. The total number of
electrons obtained after adding up all theP α

n,l is accurate to within 0.005 of an electron.
The LSDA residual differences between the output ground-state density and the input

local density for the metal and oxygen ions are depicted in figure 1. The distortion is
negligible for the nickel ion and indicates the adequacy of the ionic configuration and the
ground-state crystal density. This is a consequence of the local nature of the d orbitals.
The local density is scarcely distorted and simulates the crystal density around the nickel
site to a good approximation. The residual1ρα(r) for the oxygen ion exhibits a greater
discrepancy which reflects the particular behaviour of the O2− ion. The 2p oxygen functions
are known to be very diffuse since their propensity is to occupy the whole space available.
They show a greater variability than the d orbitals and are sensitive to small variations in
the ionic configuration.

The σ -values taken over the atomic Wigner–Seitz sphere are 0.01e for the nickel and
0.096e for the oxygen ions. They should be compared to 0.098e given by [25] for the unit
cell of diamond composed of two carbon atoms. Our simple convergence scheme based on
the Mulliken charge yields a lowerσ -value for the nickel atom than for the carbon atom.
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Figure 1. LSDA residual differences in radial coordinates for the metal and oxygen ions.

The result is coherent with the ionic character of NiO since there is no build-up of charge
in the interatomic region as in covalent systems. The higherσ -value for the oxygen ion
cannot be ascribed to bond formation but rather to a redistribution of the charge around
the oxygen. The charge density extends or compresses so as to adapt itself to the volume
left by the nickel electronic cloud. The number of displaced electrons can be evaluated as
1
2

∫ |1ρα(r)| dr and amounts 0.1e for the oxygen ion. Theσ -values are of the same order
of magnitude for the LSDA+ U approximation.

Table 1. The hybridization rate (in per cent) for each band.

LSDA LSDA + U

Bands 2p 3d 2p 3d

2p 91.0 9.0 78.5 21.5
t2g↑ 4.8 95.2 17.1 82.9
eg↑ 12.0 88.0 33.4 66.6
t2g↓ 6.7 93.3 13.2 86.8
eg↓ 19.8 80.2 8.7 91.3

The self-consistent densities of states are represented in figures 2 and 3 respectively for a
simple LSDA and a corrected LSDA+U calculation. When adopting the usual terminology
to identify the 3d bands in a cubic field, for the LSDA and with increasing energy order
an occupied t2g↑ band, an overlapping eg↑–t2g↓ band and an empty eg↓ band are observed.
The band gap is between d bands and is of magnitude 0.4 eV. The forbidden gap of 4.1
eV is obtained with a value ofU amounting to 5.4 eV together with a Stoner parameter
converged to 1.12 eV. TheU -correction causes a clear change in the density of states. The
unoccupied eg↓ band moves towards the 4s band by about 3 eV while the occupied 3d bands
are pulled down towards the 2p bands. The 3d bands are not merged into the 2p bands but
are spread out into three individual bands since the separation between the eg↑ and t2g↓ is
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Figure 2. The total and partial ground-state DOS for NiO within the LSDA calculations.

almost achieved. The 2p–3d closeness favours mixing of the orbitals for all of the occupied
states. In order to appreciate the importance of the hybridization effect we present in table
1 the p and d contributions within each band. As an exampleU raises the proportion of
the 2p functions in the eg↑ band by about twenty per cent but reduces the proportion of the
2p functions in the unoccupied eg↓ band by about eleven per cent.

Table 2. Comparison between LSDA and LSDA+ U results.

U I Ionicity Spin moment Gap
(eV) (eV) (electrons) (µB ) (eV)

LSDA 0 0 1.73 1.61 0.4
LSDA + U 5.4 1.12 1.87 1.91 4.1

Each of the d bands exhibits a modest width, the maximum being 1.25 eV in the case
of the t2g↑ band. Thus an appropriate basis leads to narrow bands consistent with the
description of localized electrons. The ionicity and the magnetic moment are summarized
in table 2, where it is noted that the LSDA+ U version increases both quantities. The
theoretical moments fall into the experimental interval ranging between 1.6 and 1.9µB

[26–28]. The best agreement with the experiment is given by the LSDA+ U approach and
corresponds to the highest moment and ionicity. The ionicity is close to the integer value of
two electron charges and corroborates the existence of the O2− ion in NiO. The presence of
that ion was suggested earlier when optical experiments were successfully interpreted with
the ligand-field model.
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Figure 3. The total and partial ground-state DOS for NiO within the LSDA+ U calculations.

4. Discussion

The consequent ionicity, obtained in both the LSDA (1.73e) and the LSDA+ U (1.87e)
approaches, indicates a strong probability that a doubly ionized oxygen ion is present. The
existence of O2− is quite likely in a cubic solid owing to the stabilizing Madelung potential
on the anion site. The ionic character basically influences the occupation of the 3d metal
orbitals. It is well known that an octahedral environment spreads the d levels into a t2g triplet
with xy-, yz- andzx-symmetry below an eg doublet withx2 − y2 and 3z2 − r2 symmetry.
Further a spin-polarized Hamilonian moves the majority triplet and doublet apart from the
minority energy states, the size of the displacement depending on the difference between
the majority and minority exchange–correlation potentials. The last three occupied bands
together with the first empty band correspond on the energy scale to the t2g↑, eg↑, t2g↓ and
eg↓ symmetries for the two LSDA and LSDA+U versions. The assignment is the result of
the symmetry analysis of the orbitals attached to the electronic states and has been checked
by a partial density of states projection. The basis d functions spanning the triplet and
doublet subspaces are those pointed out by the ionic model even if the 2p hybridization
precludes a perfect distribution. The occupied states taken up to the Fermi level supply
integer values for eight d orbitals. Thus the occupation number is exactly one for the five d
majority orbitals, as for the minority electrons filling the threexy-, yz- andzx-orbitals. The
classical behaviour of the d orbitals in an ionic crystal can be recognized. The preferential
occupation of the t2g↓ levels has been observed experimentally by Sasakiet al [29] on the
density lines where a departure from the spherical symmetry becomes clearly visible.

The comparison between our LSDA and the ground-state density of Terakuraet al [4]
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reveals a noticeable difference. A forbidden gap of more than 2 eV spreads the p from
the d states in figure 2 whereas the energy levels are continuously distributed up to the
Fermi level in [4]. The explanation comes from the additional flexibility introduced by the
localizing potential. Besides the possible variation of the potential radii ratio common in the
two approaches, a further degree of freedom is ensured by the constant potential. Indeed for
each fixedV 0 defining a proper set of atomic-like functions the consistent solution of the
Kohn–Sham equation provides a different outcome. In our self-consistent calculations the
muffin-tin ratio RNi/ROx has been fixed to 0.943 (1.13 in [4]) and the localizing potentials
to 1.12 au for nickel and 0.13 au for oxygen. This choice gives an ionicity of 1.73e and
a magnetic moment amounting 1.6µB . Now the currently calculated LSDA magnetic
moments given by several authors are about oneµB . Such low theoretical values suggest
a nickel-to-oxygen charge transfer that we estimate to be around one electron. The degree
of charge transfer has a clear effect on the nature of the electronic states subspanning the
valence bands. For an ionicity of two electrons, six p- and eight d-type electrons have to be
accommodated within the valence band. In contrast, for a one-electron charge transfer the
valence states are distributed over five p and nine d symmetry levels. In the latter case the
p and the d states are more strongly mixed and give rise to a broadening of the p band. As
an example, ifV 0 is fixed equal to 1.2 au for the nickel and to 0.5 au for the oxygen, the
ionicity reduces to 1.25e and the forbidden p–d gap to 1.3 eV. These findings demonstrate
that the results depend on the converged occupation numbers in agreement with the results
of [25]. The trend already checked in [4] is that both the magnetic moment and the nickel-
to-oxygen charge transfer vary in the same way. According to our results we believe that
a significant charge transfer is necessary in order to obtain a magnetic moment close to the
recorded experimental values. The high ionicity also provides quite a simple argument for
explaining the discrepancies with previously published LSDA works.

The recent theoretical estimations forU show some dispersion. An LDA self-consistent
calculation performed by Anisimovet al [13] ascribes 8 eV toU . A far more significant
value has been given by Towleret al [30]. The authors found 28 eV for the Coulomb energy
in their Hartree–Fock approximation. Our adopted value of 5.4 eV is of the same order
of magnitude as the empirical estimations. Thus from spectroscopic data Brandow [31]
deduced 5.8 eV forU , whereas Zaanen and Sawatsky [15], from energetic and screening
considerations, valueU at 6.1 eV. The disagreement between the theoretical and the
empirical values stresses the real difficulty in numerically estimatingU for atoms in a solid.
The qualitative definition usually admitted is the energy required to put a supplementary
electron into a 3d orbital when the electron jumps from one site to another. Assuming no
spin flip during the hopping process,U has to be less than or equal to the energy separation
between the occupied and the empty eg bands. Indeed, a metal↑ can receive a ninth electron
with spin↓ in either one of the unoccupiedx2 −y2 or 3z2 − r2 orbitals. This extra electron
proceeds from the occupied eg↓ band issued from the metal↓ on account of the double
degeneracy of the bands. The same reasoning can be used when a supplementary electron
is put in a metal↓. The presentU -value is consistent with the definition since the gap
between the eg↑ and eg↓ bands is 5.58 eV.

The value of 5.4 eV ascribed toU has been obtained by adjusting the theoretical
LSDA+U gap to the experimental value. According to the derivation of Mattheiss [32] the
crystal-field separation can be expressed in terms of a pure ionic and a covalent contribution.
For NiO the t2g–eg splitting is governed by the covalence term which depends on the overlap
between the metal 3d and the surrounding oxygen 2p orbitals. The variability in the 2p
spatial extent does not greatly affect the p–d overlap and hopping integrals since the localized
3d functions feel only the tails of the 2p functions. As a consequence the small forbidden
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band appearing in the non-corrected LSDA approach is not very sensitive to the choices of
RNi/ROx andV 0. In order to match the theoretical with the experimental gap, the additional
U -correction has to enhance the crystal-field effect. This interpretation holds whatever the
solutions derived from the variations of the two parameters are. It turns out that the required
U -value does not vary over a large energy interval but that it ranges between 5.2 and 6.2 eV.

Table 3. A comparison between recently published fundamental quantities.

U Spin moment Gap
(eV) (µB ) (eV)

LDA + U 8 1.59 3.1
Anisimov et al [13]
LDA + U 1.7 3.7
Anisimov et al [33]
LSDA + U 6.1 1.7 3.7
Wei and Qi [14]
Hartree–Fock 28 1.924 13.6
Towler et al [30]
LSDA + U 5.4 1.91 4.1
present work

The theoretical approaches used to describe the 3d electrons divide intoab initio Hartree–
Fock studies and LDA treatments. The Hartree–Fock descriptions treat the correlations
within local orbital basis sets while the local density approximations provide additional
corrections. The theoretical results are summarized for comparison in table 3. It is readily
appreciated that the studies based on theU -corrected LDA present values comparable in
magnitude as much for the gap as for the magnetic moment. In contrast both the gap
andU have too-large values in the converged Hartree–Fock approximation. The apparent
agreement between the LSDA+U results masks fundamental deviations in the band patterns.
The first difference concerns the amplitude of the band dispersion. Four 3d minibands appear
clearly in the work of Wei and Qi [14] and show bandwidths comparable with ours. In
contrast, broad t2g↑ and t2g↓ bands made up of many peaks describe the d-states repartition
obtained by Anisimovet al [13]. The unfilled eg↓ band is like ours in all of the cases
reported. A second difference which has a major implication as regards the interpretation
of the experimental work concerns the relative position of the 2p and the 3d bands. In
fact NiO refers to a charge-transfer or to a Mott insulator according to the character of
the highest occupied band. Our investigations lead to a reverse situation with respect to
the other LSDA+ U approaches [13, 14]. The flexibility of our treatment is by no means
capable of overthrowing the p and d bands. The procedure simply makes it possible to more
or less extend the orbital space occupation with the property that an orbital extension on one
site is balanced by an orbital contraction on the neighbour site. The behaviour essentially
alters the ionicity and the moment and—not so much—the orbital energy levels.

In the following section we would like to make some remarks about the assignments
of the experimental bands. Both sets of angular photoemission results [17, 18] depict large
dispersive oxygen bands below flat d bands. The obvious fact which comes out of the
experiments is that the lowest-energy dispersion curves reproduce beyond all doubt the
typical behaviour of 2p bands within an NaCl structure [34]. The experimental bands
corresponding to the 2p oxygen functions can be considered as standard 2p bands in a cubic
system whose features are well reproduced by the angular photoemission results. That
evidence is sustained by a simple LDA calculation [17] developed on a cubic lattice. It is
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easily seen that the calculated 2p curves fit well with the experimental data. In contrast
the LSDA calculations [17] developed on a rhombohedral lattice show less satisfactory
agreement since the theory provides six branches to be compared with a single and a
doubly degenerate band. In our view the recorded anomaly finds its origin in the treatment
of the antiferromagnetism which consists in admitting that the metal↑ and ↓ atoms can
be considered as belonging to two different chemical species. A lack of symmetry is
artificially introduced since the oxygen is no longer sixfold coordinated with identical metal
atoms. Its surrounding divides into two distinct groups of three atoms each which breaks
the cubic symmetry. As a result the0–X direction is no longer a symmetry direction in the
reciprocal space and removes the degeneracy of the 2p bands. The situation for the 3d bands
is interchanged with respect to the LDA and LSDA. The obtaining of a forbidden d gap is
not possible for a cubic lattice as demonstrated by Mattheiss [35] but it appears clearly for
a rhombohedral lattice associated with the spin-polarized treatment of the antiferromagnetic
order [4]. Thus it seems that the improvement obtained for the metal bands with the LSDA
is at the expense of the ligand bands. In order to overcome the discrepancy we suggest
using magnetic groups. They preserve the chemical nature of the metal↑ and ↓ atoms
and warrant the cubic environment of the oxygen atoms. The distinction between the two
metals is realized by considering an extra coordinate which, for antiferromagnetic NiO, is
the direction of the moment.

Figure 4. Dispersion curves along the0–X direction for the LSDA+ U solution.

The theoretical LSDA+ U dispersion curves are presented in figure 4. The oxygen
2p bands exhibit the overall experimental width of 4 eV. The t2g↑ band is related to the C
structure reported in reference [17] and the eg↑–t2g↓ bands to the A structure. As for the 2p
bands, there is also a disagreement about the number of calculated d profiles. The measured
A structure contains in fact three dispersion curves [17]—which is still less than the five
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predicted branches. A similar observation holds for the C structure since three curves are
expected. We believe that, in contrast to the case for 2p bands, the experimental resolution
is a possible factor generating the discrepancy, the d levels being very close in energy. If
the difference in number between the theoretical and experimental curves is disregarded,
our band profiles are similar to the experimental ones both for the character of the bands
and for their appearance in energy order. However, the point worth examining is the
character of the last occupied band because the 2p admixture within the upper valence band
is essential to explain both the spectroscopic results and the existence of the p conduction.
The LSDA+ U density-of-states projection in figure 3 indicates clear 2p mixing but the
part of the 2p contribution at the top of the valence band is not substantial enough to ensure
a primarily p character. The remaining question is then that of whether an almost pure p
band is needed or whether a mixed p–d band suffices for obtaining quantitative agreement
with the experimental data. In the first case the 2p bands lie above the 3d bands and NiO
is a genuine charge-transfer insulator. In the second case the 2p and 3d bands are reversed
and NiO is instead an altered Mott–Hubbard insulator. The interpretation of the angular
photoemission results [17] supported by the present LSDA+ U calculations favours the
second alternative. The latter energy level order should be adopted only if new developments
enhance the ligand contribution to the top filled levels. A 2p rate exceeding fifty per cent
would provide a valuable argument in favour of a Mott–Hubbard character of NiO. Let
us mention that the present theoretical density agrees with the proposed band scheme of
Hüfner et al [36] deduced from a coherent interpretation of the available experimental
data. Further observations concordant with ours have been reported in the recent work
of Aryasetiawan and Gunnarsson [37] where the correlation effects have been introduced
via the GW approximation. It appears that the self-energy correction produces the same
effects as theU -correction with regard to the reduction of the hybridization in the lowest
eg↓ conduction band and the 2p mixing in the highest valence band.

5. Conclusion

On one hand the flat dispersion curves lying just below the Fermi level indicate strong
evidence for their d character and on the other hand the spectroscopic data are well explained
in terms of p holes residing in the upper valence band. These two experimental facts can
be reconciled when a strong reduction of the d character at the top of the valence band is
assumed. The LSDA+ U approach yields results in that direction but the approximation
does not give the full answer. Indeed, the prediction of the satellite peak is beyond the
possibilities of the one-electron approach. Models describing the whole of the photoemission
spectra together with the energy dispersion ink-space would represent appreciable progress.
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